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One of the long-term goals of synthetic biology is to reliably engineer biological systems that perform human-
defined functions. Currently, researchers face several scientific and technical challenges in designing and
building biological systems, one of which is associated with our limited ability to access, transmit, and control
molecular information through the design of functional biomolecules exhibiting novel properties. The fields of
RNA biology and nucleic acid engineering, along with the tremendous interdisciplinary growth of synthetic
biology, are fueling advances in the emerging field of RNA programming in living systems. Researchers
are designing functional RNA molecules that exhibit increasingly complex functions and integrating these
molecules into cellular circuits to program higher-level biological functions. The continued integration and
growth of RNA design and synthetic biology presents exciting potential to transform how we interact with
and program biology.
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molecules can exhibit structural flexibility, which enables them

to dynamically adopt different conformations and thereby exhibit

allosteric properties. RNA is composed of four nucleotide resi-

dues that interact through well-defined hydrogen-bond, base-

stacking, and electrostatic interactions. RNA secondary struc-

ture is dictated by these hydrogen-bond interactions, allowing

the development of folding programs that predict the secondary

structures and associated free energies of RNA molecules

(Mathews, 2006; Zuker, 2003). The energies involved in RNA

folding are contributed to a lesser degree by tertiary structure,

such that the relationship between RNA sequence, structure,

and function is relatively accessible and predictable. These

properties make RNA a powerful design substrate in synthetic

biology.

RNA Parts
In engineering design, a part is a component that can perform a

basic function. RNA parts are genetic components composed of

RNA molecules that are capable of performing basic biological

functions such as gene regulation, directed conformation

change, and ligand binding. RNA parts can be generally grouped

into three categories based on function: sensors, actuators, and

transmitters (Table 1).

RNA Sensors

Sensors are parts that detect signals. RNA sensors detect

diverse signals, such as temperature and molecular ligands,

through various binding events, including hybridization and

tertiary interactions. The binding event encoded in an RNA sensor

is generally transduced to an actionable event. Therefore, RNA

sensors are typically coupled to other RNA parts.

Temperature Sensors. RNA senses temperature through the

temperature-dependent nature of hybridization interactions.

Naturally occurring RNA sequences can adopt conformations

thataresensitive tosmall temperaturechanges (Lai, 2003).Gener-

ally, temperature-sensitive RNA parts exhibit less structured
Introduction
The engineering of biological systems that process information,

materials, and energy holds great promise for developing solu-

tions to many global challenges, including renewable energy

production, material synthesis, and medical advancement. Our

ability to understand and routinely engineer biological systems

is limited by the tools available to broadly access, transmit, and

control molecular information encoded in the various properties

of biomolecules. Synthetic biology is a rapidly growing interdisci-

plinary field that involves the application of engineering principles

to the design and construction of synthetic biological systems.

Core objectives of modern synthetic biology have focused on

the engineering of complex biological systems (Basu et al.,

2005; Ro et al., 2006) and the development of engineering frame-

works that support the reliable programming of biological

function, including abstraction, standardization, and modularity

(Endy, 2005). Within the context of these objectives, we review

the emerging field of RNA programming in living systems, which

is itself founded on the more mature fields of RNA biology and

in vitro nucleic acid engineering and computing (Joyce, 2007;

Seeman, 2005). Advances in RNA synthetic biology are providing

the foundational tools and knowledge base that will support

broader efforts in encoding cellular information processing and

control operations in synthetic RNA molecules and integrating

these engineered components with biological networks to

program higher-level biological function (Figure 1).

RNA Provides a Programmable Molecular Substrate that
Exhibits Diverse Function
Biological functions are encoded within the variety of biomole-

cules present in living organisms. The biological functions of

one class of nucleic acids, RNA, can be grouped into protein-

coding and non-protein-coding functions. Noncoding RNA

exhibits diverse functional properties, including gene-regulatory,

enzymatic, and ligand-binding properties. In addition, RNA
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conformations as a function of increasing temperature (Narber-

haus et al., 2006). Effort has been directed toward engineering

and refinement of RNA temperature sensors through selection/

screening and rational design approaches. RNA temperature

sensor parts have been developed in combination with different

RNA actuator parts to link changes in temperature to gene-regu-

latory events (Neupert et al., 2008; Waldminghaus et al., 2008;

Yoshimatsu and Nagawa, 1989).

Molecular Sensors. RNA generally senses molecular signals

through direct binding interactions with the molecular target.

RNA aptamers are the most common class of RNA sensor parts

capable of binding ligands with high affinities and specificities

(Hermann and Patel, 2000). The flexibility of RNA as a sensor is

highlighted by the diverse ligands against which RNA aptamers

have been generated, including carbohydrates, proteins, and

small molecules (Hermann and Patel, 2000). RNA aptamers are

typically generated de novo using an iterative in vitro selection

strategy or SELEX (Systematic Evolution of Ligands by EXponen-

tial enrichment) (Ellington and Szostak, 1990; Tuerk and Gold,

1990). In addition, RNA can bind nucleic acids through Watson-

Crick base-pairing, enabling the engineering of RNA sensors to

nucleic acid ligands.

RNA Actuators

Actuators are parts that control a process or event. RNA actua-

tors control the activity of other biological molecules, thereby

affecting responses in living systems, and exhibit a variety of

functions such as gene-expression regulation, posttranslational

regulation, and directed localization.

Gene-Expression Actuators. The most predominant class of

RNA actuators are parts that regulate gene expression, where

actuation can occur through different mechanisms, including

transcription, translation, splicing, and stability. These actuators

can exhibit their regulatory effects either in cis, when the part is

embedded within the target transcript, or in trans, when the part

acts on a separate target RNA.

Figure 1. The Integration of RNA Parts and Devices as Information
Processing and Control Components into Engineered Biological
Systems
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Transcription Termination Actuators. In prokaryotes, tran-

scription attenuation is actuated by cis-acting RNA parts called

transcription terminators (Henkin, 2000). Intrinsic terminators

are the most commonly used class of termination parts and

are composed of GC-rich stem loops followed by a series of U

residues. Transcription termination parts are largely taken from

nature and little engineering has been done to refine or enhance

their function. These parts are implemented downstream of

coding regions and their function is relatively insensitive to the

distance from the stop codon. Researchers have implemented

multiple transcription termination parts in series to improve the

activity exhibited from a single part (Shetty et al., 2008).

Translation Initiation Actuators. In prokaryotes, translation is

initiated at a cis-acting RNA part called a ribosome binding site

(RBS) that mediates ribosome loading onto a transcript (Kozak,

1999). RBSes consist of several consensus nucleotides that

hybridize with the 30 end of the 16S rRNA. In contrast, ribosome

loading in eukaryotes is initiated at the 50 end of a transcript

through a 7-methyl guanosine cap that recruits the translation

initiation machinery. While translation initiation typically occurs

through this cap-dependent mechanism, translation can be

initiated internally at a cis-acting RNA part called an internal ribo-

some entry site (IRES) (Hellen and Sarnow, 2001). IRESes range

from short unstructured sequences, which facilitate translation

initiation through hybridization with 18S rRNA, to large structured

elements, which interact with the initiation machinery (Chappell

et al., 2000; Kieft et al., 2002). RNA engineers have generated

synthetic RBS and IRES sequences with varying activities

(Owens et al., 2001; Rackham and Chin, 2005; Zhou et al.,

2003). The activity of a RBS is determined by the number of inter-

actions it forms with the 16S rRNA and its distance upstream of

the start codon (Chen et al., 1994), whereas the activity of an

IRES is less dependent on this distance and can be increased

when linked in multiple copies (Chappell et al., 2000).

Catalytic Actuators. Ribozymes are catalytic RNA parts that

most commonly catalyze the cleavage and/or ligation of RNA

molecules via a trans-esterification reaction involving metal ions

as cofactors (Doudna and Cech, 2002). The hammerhead ribo-

zyme (hhRz) has been extensively utilized as a gene-regulatory

part due to its small size, ease of design, and rapid kinetics. The

hhRz motif contains a conserved 11-nucleotide catalytic core

encompassed by three stems (I, II, III) (Blount and Uhlenbeck,

2005), where interactions between the nucleotides in stem loops

I and II are critical to intracellular activity (Khvorova et al., 2003).

RNA engineers have put significant effort into refining ribo-

zymes for gene-regulatory functions. For example, synthetic

trans-acting hhRzs have been constructed such that the trans-

ribozyme sequence binds the target transcript through targeting

arms to form a catalytically active structure (Vaish et al., 1998).

HhRzs have been implemented to actuate gene expression

through directed cleavage in cis or in trans by targeting various

regions within a transcript. For example, hhRzs inserted within

the 30 untranslated region (UTR) of target transcripts have been

shown to effectively downregulate gene expression in eukary-

otes (Khvorova et al., 2003; Meaux and Van Hoof, 2006).

HhRz-directed cleavage and gene inhibition has also been

shown within the 50 UTR (Yen et al., 2004), although studies

have indicated that implementation in this location in eukaryotes

can result in nonspecific inhibition of expression due to structural
logy 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 299
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Table 1. Examples of RNA Parts and Their Associated Functions
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stranded RNAs (dsRNAs) that are introduced exogenously into

cells or generated endogenously from primary miRNA transcripts

(pri-miRNAs) (Meister and Tuschl, 2004). Pri-miRNAs are

processed in the nucleus by the RNase III enzyme Drosha to

precursor miRNAs (pre-miRNAs) (Lee et al., 2003), which are

exported to the cytoplasm by Exportin-5 (Lund et al., 2004).

Exogenously introduced dsRNAs and pre-miRNAs are pro-

cessed in the cytoplasm by the RNase III enzyme Dicer (Bernstein

et al., 2001). The cleaved RNAs are unwound and loaded into

multiprotein complexes, where these RNA parts hybridize to

target transcripts and direct cleavage or translational repression

based on the degree of complementarity (Hammond et al., 2000;

Hutvagner and Zamore, 2002).

Due to the efficacy and flexibility of RNAi-mediated gene

silencing, RNA engineers have developed various types of

synthetic RNAi substrates (Dykxhoorn et al., 2003). RNAi

substrates can be expressed from RNA polymerase II or III

promoters as siRNAs, short hairpin RNAs (shRNAs), pre-miRNAs,

or pri-miRNAs (Brummelkamp et al., 2002; McManus et al., 2002;

Miyagishi and Taira, 2002; Zeng et al., 2002). Although design

rules have been proposed to guide RNAi substrate design

(Reynolds et al., 2004), typically many sequences must be

screened to generate an effective RNAi substrate. Synthetic

RNAi substrates are commonly designed to be fully complemen-

tary to their targets to induce cleavage, which is a more effective

mechanism of gene silencing. Combinatorial targeting of multiple
effects (Yim et al., 2000). Trans-acting hhRzs exhibit greater flex-

ibility in targeting both translated and untranslated transcript

regions (Kijima et al., 1998; Morino et al., 2000; Sakamoto

et al., 1996).

Constitutive/Alternative Splicing Actuators. In eukaryotes,

a vast majority of genes consist of exons (protein coding) and

introns (noncoding), in which the former are joined in processes

of constitutive or alternative splicing to produce single or multiple

protein isoforms, respectively. Cis-acting RNA sequences direct

splicing events through binding components of the spliceosome

or other auxiliary protein factors that mediate spliceosome

assembly (Maniatis and Tasic, 2002). RNA parts that actuate

splicing events include 50 and 30 splice sites, branch point, and

enhancer and silencer sequences. Little effort has been directed

to the engineering, refinement, and utilization of RNA parts that

actuate splicing events, as our understanding of the ‘‘splicing

code’’ is incomplete (Wang and Burge, 2008). However,

researchers have utilized canonical splicing sequences to

mediate splicing (Yoshimatsu and Nagawa, 1989) and generated

enhancer and silencer sequences that can potentially be used as

refined parts for regulating splicing patterns (Wang et al., 2004).

RNA Interference-Based Actuators. RNA interference (RNAi)

substrates, such as small interfering RNAs (siRNAs) and micro-

RNAs (miRNAs), are gene-regulatory parts that silence gene

expression through the RNAi pathway (Meister and Tuschl,

2004). RNAi-mediated gene silencing is triggered by double-
l rights reserved
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RNAi substrates to a single transcript has been used to increase

gene silencing, detect cellular state, and implement more

complex regulatory schemes (Brown et al., 2007; Rinaudo

et al., 2007).

Antisense-Based Actuators. Antisense RNAs are single-

stranded RNA parts that control the function of their target

RNAs through a hybridization event (Green et al., 1986). Natural

antisense RNAs have been characterized that actuate through

a variety of mechanisms, including cleavage of antisense-target

hybrids by dsRNA-cleaving enzymes and steric inhibition of

gene expression machinery by the bound antisense (Crooke,

2004). Due to the simplicity of their design and gene-regulation

potency, significant effort has been directed to the engineering

and refinement of antisense RNA parts. Trans-acting antisense

RNAs vary in length (�20–700 nucleotides) and have been engi-

neered to inhibit the expression of different target genes in

various cellular systems (Bonoli et al., 2006; Bunch and Gold-

stein, 1989; Coleman et al., 1984). Alternatively, cis-acting anti-

sense parts can be implemented to inhibit the function of other

RNA parts. For example, an antisense part can be implemented

in cis to hybridize to a terminator part to form an antiterminator

that inhibits transcription termination (Henkin and Yanofsky,

2002). Cis-acting antisense parts are typically located within

close proximity to their targets and are of sufficient length to

disrupt target function (�10–20 nucleotides).

RNase Activity Actuators. RNases are RNA processing

enzymes that act on cellular RNAs through endoribonucleolytic

or exoribonucleolytic activities (Alifano et al., 1994). Specific

RNA parts are recognized and processed by cellular RNases.

For example, Rnt1p, an RNase III enzyme in Saccharomyces cer-

evisiae, cleaves hairpins with conserved tetraloops (Chanfreau

et al., 2000). As another example, RNase E is an Escherichia

coli endoribonuclease that cleaves single-stranded AU-rich

sequences (McDowall et al., 1994). Substrates for both RNases

have been discovered in cellular transcripts, highlighting their

functional roles in processing and degrading mRNA (Ge et al.,

2005; Lundberg et al., 1990). Significant effort has been directed

toward the engineering, refinement, and utilization of cis-acting

RNA parts that actuate RNase activities to regulate gene expres-

sion. The length and location of such RNA parts will depend on

the associated RNase and its intended gene-regulatory function.

For example, stabilizing hairpin parts have been placed at the

50 and 30 ends of transcripts to inhibit RNase E and exoribonu-

clease activities, respectively (Carrier and Keasling, 1997).

RNase activity actuation parts exhibiting varying activities have

been generated through sequence and structural modification

(Carrier and Keasling, 1999; Smolke et al., 2000).

Aptamer-Based Translational Actuators. In addition to acting

as sensors, RNA aptamers can function as cis-acting gene-regu-

latory parts. RNA aptamer-based translational actuators respon-

sive to various small molecules have been embedded within the

50 UTR of target eukaryotic transcripts (Harvey et al., 2002;

Suess et al., 2003; Werstuck and Green, 1998). The aptamer

sequence adopts a more structured conformation upon binding

its ligand that inhibits ribosomal scanning, thereby reducing

expression levels in a ligand-dependent manner. However, the

general relationship between the relative location of the aptamer

within the 50 UTR and translational efficacy remains unclear, as

other studies have indicated that secondary structures within
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this region inhibit translation (Pelletier and Sonenberg, 1985). It

is possible that the ability of RNA aptamers to function as

gene-regulatory parts is dependent on specific properties of the

aptamer and its location relative to other RNA parts in the tran-

script. RNA aptamer-based translational actuators encode two

functions, sensing and actuation, and are therefore an example

of a double-coding part.

Posttranslational Activity Actuators. A second class of RNA

actuators functions to regulate the activity of biological mole-

cules. RNA aptamers can function as trans-acting RNA parts

that actuate the activity of molecules posttranslationally through

binding interactions. Binding of a synthetic RNA aptamer to its

molecular ligand can interact with chemical moieties important

to the functional activity of the ligand, resulting in inhibition

(Famulok et al., 2001) or enhancement of activity (Babendure

et al., 2003). RNA-based posttranslational activity actuators are

another example of a double-coding part. Intramers are a class

of RNA aptamer-based posttranslational activity actuators that

are expressed intracellularly to inhibit the activity of various

molecular ligands (Famulok et al., 2001). For example, intramers

against viral proteins (Kim and Jeong, 2004; Nishikawa et al.,

2003) have been shown to inhibit the activities of the target viral

proteins in human cells, thereby reducing or inhibiting viral

infectivity.

Localization Actuators. A third class of RNA actuators functions

todirect localization of biologicalmolecules todifferent molecules,

cellular compartments, or specific cells. Localization of mRNA is

used to achieve higher local protein concentrations (Hazelrigg,

1998), whereas localization of gene-regulatory RNAs and tran-

scripts can be used to achieve conditional or enhanced control

of gene-regulatory functions (Lee et al., 1999). Sequences that

bind protein factors responsible for localization effects, termed

zip codes, can be used as cis-acting localization parts (Bassell

et al., 1999). Localization strategies can also be performed by

scaffold parts that bring molecular targets close together to

enhance function associated with their interactions. Although

such scaffolding functions are typically performed by proteins in

nature (Pawson and Scott, 1997), the ability of RNA to bind molec-

ular ligands supports its potential use as a scaffold part.

RNA localization parts have either been adapted from nature

or generated as RNA aptamers to specific molecular targets.

For example, heterologous transcripts harboring RNA zip-code

parts within their 30 UTRs have been localized to targeted

compartments within the cytoplasm (Kislauskis et al., 1993). In

addition, such RNA zip-code parts have been integrated with

other RNA actuation parts to enhance gene-regulatory activities

through colocalization. For example, the human a- and b-actin

zip codes were engineered into trans-acting hhRzs and target

genes, and the constructs harboring matched zip codes (a-a,

b-b) exhibited enhanced colocalization and ribozyme-mediated

inhibition of target expression (Lee et al., 1999). As another

example, synthetic RNA scaffolds have been built linking

multiple RNA aptamers to localize DNA-binding and transcrip-

tional activation proteins to allow transcription initiation in yeast

(Cassiday and Maher, 2001).

RNA Transmitters

Transmitters are parts that send or convert signals between

different components. RNA transmitters are RNA sequences

that translate an informational event (such as signal detection
logy 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 301
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by a sensor) from one RNA part to another through conforma-

tional changes, and thus are typically coupled to other RNA

parts.

Communication Module Parts. Communication module parts

are based on a single sequence that can bind to a partially

complementary target strand in more than one way, where the

energetics of strand binding allow the part to move between

different bound states through a helix-slipping event (Soukup

and Breaker, 1999).

Strand Displacement Parts. Strand displacement parts are

based on two sequences that compete for binding to a comple-

mentary target strand, where the energetics of each binding

event allow the part to move between different bound states

through a competitive hybridization event (Mandal and Breaker,

2004).

RNA Devices
A device in engineering design is a combination of refined parts

that can perform a human-defined function (Endy, 2005). RNA

devices are composed of more than one functionally distinct

RNA parts and are capable of performing programmed

biological functions. Riboswitches are naturally occurring coun-

terparts of RNA devices that link molecular sensing and gene-

regulatory functions (Mandal and Breaker, 2004). Riboswitches

control gene expression in response to specific molecular inputs

and act through diverse gene expression mechanisms (Breaker,

2008). Although the majority of riboswitches respond to cellular

metabolites, riboswitches that incorporate temperature sensors

have also been characterized (Narberhaus et al., 2006). Ribos-

witches that incorporate multiple sensor and actuator domains

through more complex architectures to perform higher-order

regulatory functions, such as cooperativity and multi-input signal

integration, have also been identified (Breaker, 2008).

Building on these natural examples, engineers have built

a variety of RNA devices that process and transmit molecular

inputs to targeted gene expression outputs in different cellular

systems (Isaacs et al., 2006; Suess and Weigand, 2008). Engi-

neers have adopted various design strategies to build RNA

devices from combinations of diverse parts and have

employed both screening/selection and rational design

approaches.

RNA Devices Based on the Direct Coupling

of Sensor and Actuator Parts

A direct coupling device design strategy is one that links the

sensor and actuator parts directly without the inclusion of

a distinct transmitter part (Figure 2A). In this strategy, information

(in the form of input binding to the sensor) is typically transmitted

between the two parts through conformational changes associ-

ated with ligand binding to the aptamer that are specific to each

aptamer-ligand pair. As a result, the coupling of parts into a

Figure 2. RNA Device Design Strategies
(A) A device design strategy based on the direct coupling of sensor and actu-
ator parts.
(B) A device design strategy based on the integration of a transmitter part
between the sensor and actuator parts.
(C) A device design strategy based on the integration of a transmitter part that
enables the modular assembly of sensor, actuator, and transmitter parts.
rights reserved
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functional RNA device in this strategy can be dependent on

mechanistic properties of the sensor and actuator.

Early examples of the direct coupling strategy were imple-

mented based on the replacement of a portion of the actuator

with the sensor. For example, a ribozyme-based RNA device

was built by replacing a stem in the group I self-splicing intron

from the bacteriophage T4 thymidylate synthase gene with the

theophylline aptamer (Thompson et al., 2002). The device was

integrated into its native gene and demonstrated theophylline-

dependent splicing and regulation of cell growth in an E. coli

thymidine auxotroph strain. In another example (Buskirk et al.,

2004), an input-dependent transcriptional activator activity was

built by replacing a stem in a RNA part that functions as a

transcriptional activator (Buskirk et al., 2003) with the tetrame-

thylrosamine (TMR) aptamer (Grate and Wilson, 1999). A func-

tional TMR-responsive device was generated by randomizing

several nucleotides in the region connecting the two parts and

selecting for TMR-responsive sequences, which allowed the

conformational change associated with TMR binding to activate

the transcriptional activator.

Other examples are based on the direct coupling of the sensor

and actuator sequences. In one example, the theophylline

aptamer was directly coupled to a shRNA actuator (An et al.,

2006) (Figure 2A). Dicer cleavage of the shRNA sequence was

inhibited by theophylline, resulting in small molecule regulation

of RNAi-based gene silencing. The device function was shown

to be very sensitive to the distance between the Dicer cleavage

site and ligand binding site, because changes of even one base

pair abolished function. RNA devices have also been shown to

effectively regulate splicing and alternative splicing through this

strategy by coupling small molecule aptamers to 50 splice site

and branch point sequences (Kim et al., 2008; Weigand and

Suess, 2007).

RNA Devices Based on Integration of a Distinct

Information Transmission Function

A second type of device design strategy is one that links the

sensor and actuator parts through a separate transmitter part

(Figure 2B). The transmitter part typically translates information

between the sensor and actuator through a change in secondary

structure. In this way information is transmitted through a mech-

anism that is itself independent of input binding to the sensor,

such that the molecule adopts at least two different conforma-

tions associated with an active or inactive sensor. Input binding

to the conformation harboring an active sensor shifts the distri-

bution between these conformations to favor the input-bound

state. By introducing an information transmission function that

is distinct from the input binding event, devices can achieve

greater flexibility in the coupling of actuator and sensor parts.

Several examples of RNA devices that link aptamers to trans-

lation initiation parts through linker sequences that perform

information transmission functions have been described. The

actuator of these devices is regulated by modulating its accessi-

bility to translational machinery through hybridization interactions

with the actuator sequence. For example, RBS-based devices

were developed by coupling the theophylline aptamer to a RBS

through a randomized linker region (Figure 2B). The linker region

was varied in length and theophylline-responsive devices were

screened through colorimetric, flow cytometry, and cell motility

assays in E. coli by altering the gene regulatory output (Desai
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and Gallivan, 2004; Lynch and Gallivan, 2009; Topp and Gallivan,

2008). The devices function through modulating ribosomal

accessibility to the RBS via a strand displacement mechanism,

where the RBS was partially base-paired with the aptamer in

a gene OFF state or released from base-pairing in the gene ON

state in the input-bound conformation. The aptamer sequence

in this device design strategy encodes for both ligand binding

and antisense functions such that the sequences of the sensor

and actuator are not independent of one another and cannot be

independently modified while maintaining device function. A

similar RBS-based device was built through the coupling of the

theophylline aptamer to a RBS through a helix slipping-based

transmitter part, or communication module (Suess et al., 2004),

where small nucleotide shifts led to changes in the accessibility

of the RBS and active state of the aptamer. Similar selection strat-

egies have been applied to generate RBS-based devices that

exhibit logic operations (AND, NAND) by coupling the theophyl-

line aptamer to a natural riboswitch element through a random-

ized linker region (Sharma et al., 2008).

Other examples of RNA devices built with separate transmitter

parts couple multiple actuators into a single device. For example,

two recent RBS-based devices were designed to regulate ribo-

some access to the RBS through ribozyme cleavage (Ogawa

and Maeda, 2008; Wieland and Hartig, 2008). The RBS and

hhRz actuators were coupled such that the RBS was seques-

tered within the ribozyme structure and cleavage of the ribozyme

resulted in separation of the two parts, thereby increasing

ribosome access and expression levels. Ribozyme cleavage

was in turn modulated by binding of theophylline to its aptamer,

which was linked through a communication module to the ribo-

zyme. In another example, a RBS-based device was designed

to regulate ribosome access to the RBS through cis- and trans-

acting antisense parts (Isaacs et al., 2004). A cis-acting antisense

was implemented to inhibit ribosome access to a RBS and

a trans-acting antisense was employed to activate expression

by hybridizing with the cis-acting antisense. Although this device

design offers a greater level of flexibility in tailoring parts due to

the isolation of binding events to hybridization interactions, the

sequence of the cis-acting antisense is dependent on both the

RBS and the trans-acting antisense, thereby rendering interde-

pendence among the parts.

Functional Composition Frameworks in Device Design

that Support Modular Assembly Strategies

One of the goals of synthetic biology is to develop foundational

technologies that make the engineering of biology easier and

more reliable (Endy, 2005). Efforts are being directed to the

development of functional composition frameworks, which are

a type of device design strategy that supports the construction

of devices through modular assembly of distinct parts and are

therefore characterized by functional modularity. In engineering

design, such frameworks support the efficient and reliable engi-

neering of diverse device functions from a smaller number of

refined parts through a plug-and-play type strategy without

complex device redesign.

Functional composition frameworks have recently been

proposed for single-input single-output RNA device design. In

the proposed design strategies functional modularity is achieved

through the separation of functions (sensing, actuation, informa-

tion transmission) into distinct and independent parts (Figure 3A).
logy 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 303
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A common design approach is the encoding of the information

transmission function in a distinct transmitter part that employs

a strand displacement event solely with the sequences of that

part, such that the sequences of the sensor and actuator do

not depend on one another and can be changed independently.

Therefore, the integration of sensor-actuation functions is simpli-

fied via a distinct transmitter part that insulates part functions

and controls the interactions between parts through predictive

hybridization interactions.

In one example, a functional composition framework for RNA

device design was proposed based on the assembly of three

parts (Win and Smolke, 2007): a sensor, made of an RNA ap-

tamer; an actuator, made of a self-cleaving hhRz; and a strand

displacement-based transmitter part (Figure 2C). Several design

strategies were employed in the implementation of this device

platform to support engineering properties such as portability,

utility, and composability. For example, the RNA device was

integrated into the 30 UTR of the target transcript, which is a flex-

ible and extensible sequence space where the integration of

RNA devices is anticipated to have minimal nonspecific effects

on expression. In addition, ribozyme self-cleavage in the 30

UTR inactivates a transcript and thereby lowers gene expression

independent of cell-specific machinery, thus enabling portability

across organisms. Flanking sequences were also included to

Figure 3. A Functional Composition
Framework that Supports Modular
Assembly of Single-Input Single-Output
RNA Devices and Extension to Higher-
Order Devices
(A) The flow of information through the modular
parts of an RNA device.
(B) Modular assembly of single-input single-output
RNA devices that exhibit different information
processing functions.
(C) Extension to the modular assembly of RNA
devices that exhibit higher-order information
processing functions.

insulate the device from surrounding

sequences that might disrupt its structure

and therefore activity to support reliable

coupling to other parts and devices.

Ribozyme-based devices were built in

which the input-bound conformation

was associated with the disruption or

restoration of the ribozyme catalytic

core and thus converted a molecular

input to increased (ON switch) or

decreased (OFF switch) expression,

respectively, based on the transmitter

part (Figure 3B). The device response

properties were programmed by altering

sequences within the transmitter part,

which alters the energetic and kinetic

properties of the strand displacement

event and therefore the ability of the

device to access the different conforma-

tional states. The functional modularity

of the framework was shown to support

direct sensor replacement strategies, such that aptamer

sequences to different molecular inputs (theophylline and tetra-

cycline) were swapped into the framework and the function of

the device was maintained while being made responsive to

a new input (Figure 3B).

A similar framework was used to build RNA devices that

actuate through the RNAi pathway by coupling an aptamer to

a shRNA through a distinct strand displacement-based trans-

mitter part (Beisel et al., 2008). shRNA-based devices were built

in which the input-bound conformation was associated with the

disruption of the shRNA stem, thereby inhibiting Dicer processing

and subsequent gene silencing, converting a molecular input to

increased (ON switch) expression of reporter and endogenous

gene targets. The functional modularity of both the sensor and

actuator parts in this framework was further highlighted in this

example.

Composition Frameworks that Support Extensions

to Higher-Order Device Functions

One of the important properties of a composition framework is its

extensibility to the assembly of more complex devices that

enable sophisticated programmed information processing and

control functions from basic sensing, actuation, and information

transmission parts. Such frameworks will provide general ap-

proaches for the forward engineering of multi-input, higher-order
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devices and support the combinatorial assembly of many in-

formation processing, transduction, and control devices from a

smaller number of refined parts.

Recent work has described the extension of the functional

composition framework described above for single-input

single-output ribozyme-based devices to the modular assembly

of devices that perform higher-order functions from a small set of

refined sensor, actuator, and transmitter parts (Win and Smolke,

2008) (Figure 3C). Three signal integration schemes based on

single layer device architectures were developed that involve

the assembly of multiple single-input single-output RNA devices

and the coupling of multiple sensor-transmitter components to

single ribozyme actuators. RNA devices that function as logic

gates (AND, NOR, NAND, OR gates), signal and bandpass filters,

and cooperative control devices were built on the extended

framework.

RNA Device Performance Characterization
and Measurement Standards
In support of the reuse of refined components and their efficient

integration into engineered biological systems, synthetic biolo-

gists are fueling discussions on technical standards in part and

device characterization (Canton et al., 2008). Different metrics

have been used to report the performance of RNA parts and

devices to date, making performance comparisons and the

downstream integration of these components into different

application-specific systems challenging.

The properties that characterize the performance of a RNA

device based on gene expression actuation include baseline

expression (Sd,0, expression activity in the absence of input),

input response range (input concentration over which device

output changes), and output dynamic range (reported as either

a difference, Sd,L-Sd,0, or ratio, Sd,L/Sd,0, of the expression

activity in the presence and absence of input) (Figure 4). Gener-

ally, these performance descriptors cannot be compared across

different genetic systems, such that reporting properties relative

to standards is critical to enabling device comparison. The use of

Figure 4. RNA Device Performance Characterization
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two standards in RNA device characterization was recently

proposed (Win and Smolke, 2008): (i) the gene expression

activity from the genetic construct in the absence of the RNA

device (100%; signal standard, SS); and (ii) the gene expression

activity in the absence of the genetic construct (0%; background

standard, SB). These proposed standards determine the RNA

device performance across the full transcriptional range of a

specified promoter, without any nonspecific effects that a device

might exhibit due to its location relative to other components in

the construct.

With the goal of integrating RNA devices into genetic circuits

composed of diverse biological components, such standardized

characterization information is critical to match component

properties to achieve the desired system response. For

example, proteins can exhibit very different thresholds of titrat-

able function depending on their activities and the properties

of the other components comprising the genetic circuit. Such

system properties will guide the design of the RNA device

properties to match those of the components in the circuit by

optimizing for different design criteria. The demonstrated ability

to tune RNA device response to fit performance requirements of

specific applications using (1) energetic tuning strategies (Beisel

et al., 2008; Win and Smolke, 2007); (2) higher-order architec-

tures (Win and Smolke, 2008); and (3) component matching

strategies (Yokobayashi et al., 2002) is a critical property for their

utility in downstream applications.

Enabling Technologies that Support the Engineering
of RNA Devices
The engineering of RNA devices requires the integration of several

enabling technologies (Figure 5). As a basic enabling technology,

strategies that support high-throughput and reliable RNA part

generation, refinement, and characterization are critical to RNA

device engineering. Generally, RNA gene-actuator parts are adap-

ted from nature with little modification or designed from relatively

simple hybridization-based design rules, although some work has

focused on the in vitro evolution of RNA actuators exhibiting

enhanced function (Conaty et al., 1999; Vaish et al., 1997). RNA

sensor parts havebeenadapted fromnaturally occurring elements

(Nomura and Yokobayashi, 2007), but are more often generated

through in vitro selection strategies. The generation of RNA ap-

tamers exhibiting desired in vivo affinities and specificities is

currently a limiting step in device design. In vitro selection strate-

gies for DNA aptamers to proteins have been adapted to high-

throughput formats (Cox et al., 2002) and higher efficiency parti-

tioning schemes such as capillary electrophoresis (Berezovski

et al., 2005; Drabovich et al., 2005). However, improved aptamer

generation schemes have not yet been demonstrated for RNA

aptamers and other groups of targets such as small molecules.

Composition frameworks that support the rapid assembly of

RNA devices from parts exhibiting more basic functions are

another enabling technology in support of more efficient and

reliable device design. Although first-generation frameworks

have recently been demonstrated that highlight the design

advantages afforded through such engineering design principles

(Beisel et al., 2008; Win and Smolke, 2007; Win and Smolke,

2008), much work remains in optimizing and refining RNA device

frameworks. For example, effective composition frameworks

require the careful refinement of parts such that the parts are
logy 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 305
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more reliably integrated into the proposed framework. Therefore,

libraries of well-characterized, refined RNA parts that are

compatible with device frameworks are needed to support this

enabling technology. In addition, frameworks that address exist-

ing challenges in enhancing functional device performance (Bei-

sel et al., 2008; Win and Smolke, 2007), such as dynamic range

and insulation of part functions are needed. Such improved

frameworks will likely require the integration of new technologies

that allow the measurement of RNA folding and switching rates

(Greenleaf et al., 2008), thereby advancing our understanding

of RNA structure-function relationships. Finally, extended archi-

tectures (Deans et al., 2007; Rinaudo et al., 2007; Win and

Smolke, 2008), including single-layered and multilayered

systems composed of heterogeneous components, are impor-

tant to support the engineering of more complex device

functions such as signal restoration and amplification.

Strategies that support the engineering of parts within an RNA

device platform can increase the efficiency of new device

construction by removing the additional step of part integration

and functional optimization. For example, transmitter parts have

been generated by applying in vitro (Soukup and Breaker, 1999)

and in vivo screening strategies to small libraries within func-

tional device platforms (Lynch et al., 2007; Wieland and Hartig,

2008; Win and Smolke, 2007). The latter strategy benefits from

selecting for function within the desired cellular context, as parts

that have been generated in vitro do not necessarily translate to

functional elements within the cellular environment (Link et al.,

2007; Win and Smolke, 2007). More recently, cell-based

screening strategies for transmitter parts have been adapted to

higher-throughput methods based on fluorescence activated

cell sorting (FACS) (Fowler et al., 2008; Lynch and Gallivan,

2009). Researchers have also demonstrated the application of

such higher-throughput screening methods to RNA gene-actua-

tion parts in the device platform by extending the randomized

region into the actuator (Lynch and Gallivan, 2009). An important

area of future research will be to direct such high-throughput,

cell-based screening strategies to the generation of new sensor

parts within device platforms.

Figure 5. Process Flow of Enabling
Technologies Supporting Device Design
and Implementation into Engineered
Systems

Finally, computational tools that

support the in silico design and program-

ming of device function will provide a crit-

ical enabling technology to matching

quantitative device response properties

to application-specific performance

requirements. Recent modeling tools

have been described that provide early

sequence-to-function computational

frameworks for guiding and optimizing

RNA device design (Beisel et al., 2008).

The refinement of such in silico device

design tools will require further insight

into RNA structure-function relationships

(Martick and Scott, 2006), kinetic and

thermodynamic properties of RNA folding (Greenleaf et al.,

2008), and improved predictions of RNA secondary and tertiary

structures (Parisien and Major, 2008).

The Implementation of RNA Parts and Devices
in Engineered Systems
Within living systems, RNA parts and devices are integrated into

genetic circuits composed of heterogeneous parts, including

proteins and small molecules, which comprise devices and

systems exhibiting human-defined functions. Numerous exam-

ples of the integration of RNA parts into heterogeneous systems

have been described, and more recent examples have focused

on the integration of RNA devices into circuits encoding func-

tions relevant for biotechnological or medical applications,

including metabolic engineering, cellular biosensing, phenotype

generation, and therapeutics.

In the rapidly growing field of metabolic engineering, RNA parts

have been implemented as tools to tune enzyme levels, regulate

pathway flux, and optimize product yields. In one example,

RNase activity actuators were integrated in intergenic regions

of a polycistronic transcript to direct its segmental processing

and stability, resulting in differential expression of multiple target

genes in E. coli (Smolke et al., 2000). This engineering strategy

was applied to control the flux through a synthetic carotenoid

pathway, where accumulation levels of the intermediate pathway

metabolites were varied through implementation of RNase

activity actuators exhibiting different regulatory strengths

(Smolke et al., 2001). A modified strategy was developed based

on the generation of libraries of combinations of RNase activity

actuators that were screened through FACS for combinations

that resulted in desired expression ratios (Pfleger et al., 2006).

This strategy was applied to a synthetic mevalonate pathway

using a biosensor assay to screen for mevalonate production

to optimize the relative expression of three pathway enzymes,

resulting in a 7-fold increase in mevalonate levels.

RNA parts have also been implemented as regulatory compo-

nents in circuits that have potential application in gene therapy.

In a recent example, RNAi-based actuators were integrated as
306 Chemistry & Biology 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved
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modular components into a genetic circuit that was employed as

a tight and tunable transgenic regulatory system (Deans et al.,

2007). The gene circuit coupled heterogeneous actuator parts,

repressor proteins and shRNAs, to significantly reduce the basal

expression of the regulated gene from any single actuator. The

response of the genetic circuit was shown to be tunable and

applied to the small-molecule-responsive regulation of mamma-

lian cell growth.

Recent work has also demonstrated the implementation of

RNA devices in genetic circuits that are relevant to biotechnolog-

ical applications. For example, the application of RNA devices to

the noninvasive detection of intracellular metabolite levels was

recently demonstrated (Win and Smolke, 2007). Ribozyme-

based devices were implemented as in vivo biosensors for the

detection of xanthine accumulation in S. cerevisiae by transmit-

ting the metabolite binding event to a change in fluorescent

protein levels. Genetic circuits that integrate RNA devices

toward the regulation of cellular phenotypes and traits have

also been demonstrated. In one example, an RNA device was

integrated into a genetic circuit in E. coli that enabled cells to

detect, follow, and precisely locate a molecular signal (Topp

and Gallivan, 2007). The genetic circuit implemented a theophyl-

line-responsive RBS-based device for the regulation of the cheZ

gene encoding a chemotaxis protein responsible for cell motility.

RNA devices have also been implemented in potential thera-

peutic applications. In one example, an RNA device composed

of aptamer and antisense parts that interact in trans through

hybridization was applied as a controlled therapeutic agent

(Rusconi et al., 2002). The device implemented an aptamer to

coagulant factor IXa as an antagonist and an antisense RNA as

an antidote to the function encoded in the aptamer. The ap-

tamer-antisense device was shown to function as a potent anti-

coagulant drug and antidote combination in plasma and animal

models (Rusconi et al., 2004). In another example, an RNA device

combining zip-code and gene-regulatory parts was implemented

for targeted delivery of gene-actuation parts to silence the

expression of survival genes (McNamara et al., 2006). The device

was composed of an RNA aptamer that binds to the prostate-

specific membrane antigen, which is overexpressed in prostate

cancer cells, and a siRNA that silences a target gene. The device

was demonstrated to trigger targeted gene silencing and

apoptosis in cell culture and animal models.

Conclusion
The thoughtful combination of scientific research and engi-

neering theory has resulted in significant advances in the design

of functional RNA molecules. Importantly, the field of RNA engi-

neering has been fueled, influenced, and inspired by discoveries

and advances in the areas of RNA biology and in vitro nucleic acid

engineering. The recent application of synthetic biology princi-

ples has resulted in more efficient and effective design strategies

supporting the programming of RNA devices that perform

complex information processing, transduction, communication,

and control functions in living systems. The integration of future

scientific and technological advances will lead to enabling tech-

nologies supporting the more reliable and robust programming

of RNA parts and devices and their integration as functional

components into biological networks and systems. The resulting

improvements in our ability to transmit information to and from
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living systems, and implement control within cells themselves,

will transform how we interact with and program biology.
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